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Abstract— High-throughput techniques have revolutionized
the study of genomics and molecular biology in recent years.
These methods provide a large quantity of sequence data, and
have applications in different areas of bioinformatics. One can
sequence parts or whole of an organism’s DNA to determine ge-
netic information about an individual or a population, measure
expression levels of different genes under different conditions, and
determine binding affinity of proteins to DNA segments reveal-
ing details regarding gene regulation, at a higher resolution than
before. However, different high-throughput methods that target
even a single application have different underlying error models.
Robust analytic pipelines are necessary to extract necessary in-
formation from the raw data. In this paper, we discuss future
research directions for developing such analytics using techniques
from Machine Learning and Deep Neural Networks. We focus
on two applications that will affect the diagnosis and treatment of
cancer.

I. INTRODUCTION

The Deoxyribonucleic Acid (DNA) molecule encodes the
basic instructions for synthesis of proteins. Proteins are the es-
sential agents in most cellular processes. The process by which
a segment of DNA is read and synthesized into a protein is
hence of great interest in many biological and medical analy-
ses. This process can be influenced at different stages, but the
root of the process is the organism’s DNA, which encodes in-
formation as a specific sequence of components (bases). We
refer to the entire sequence of DNA in an organism’s cell,
the genome. There are four types of bases in the DNA -
Adenine(A), Guanine(G), Thymine(T), and Cytosine(C). The
genome may be considered to be a sequence defined on the
alphabet {A, C, G, T}.

A genome’s sequence can be read through the process of
DNA sequencing. In recent years, new sequencing technolo-
gies, called Next Generation and Third Generation sequenc-
ing (NGS, TGS), have been developed that provide high-
throughput at low cost. These advances have led to the avail-
ability of data at very high resolution, allowing every base in
the DNA to be sequenced multiple times providing redundancy,
and higher signal to noise ratio. Various techniques have been
developed to analyze data obtained through sequencing to de-
termine variations (also called mutations or variants) in the
sequence compared to a known standard reference sequence.
This allows characterizing an individual’s (or a population’s)
genome sequence(s) in terms of the variations. Variations can
be of different types, from changes in single positions, to dif-
ferences in the structure of arrangements of thousands of bases.
Discovering variants (or variant calling) has applications in
many fields of bioinformatics, from analyzing the study of dis-
eases in humans [6] to development of breeding strategies for
crops [20].

Among the different types of mutations, point substitutions
(also called Single Nucleotide Polymorphisms or SNPs), where
a single base is replaced with another, and localized insertions
and deletions (called indels) account for the vast majority of
genomic variations [39]. While NGS platforms produce reads
of short length (50-250 bases), they have low error-rates and
are cost-effective compared to TGS platforms, and are hence
the current standard for obtaining sequencing data for calling
SNPs and indels. Many tools have been developed for uncover-
ing SNP and indel variants from NGS data [23][29][33]. While
metrics of performance of these tools are relatively high when
averaged over a whole genome, there are specific regions of the
genome in which most tools consistently underperform [27].
There is a need to develop techniques that set and meet per-
formance goals in such difficult-to-call regions of the DNA.
This will involve reexamining the simplifying assumptions and
heuristic rules built into the tools, and constructing machinery
that can provide a more faithful representation of sequencing
data as well as determine patterns in that data, for the purposes
of variant calling.

A variant calling workflow attempts to delineate errors as-
sociated with sequencing and data preprocessing, and hence
is impacted by the characteristics of the underlying sequenc-
ing technology. As sequencing platforms continue to evolve,
future variant calling frameworks should be able to take ad-
vantage of such improvements and aim to provide more robust
results, perhaps even combine information from multiple se-
quencing technologies. For example, though it has higher error
rates than NGS, TGS produces longer reads (1-50 kilo bases).
Longer reads can help disambiguate long repetitive regions of
the genome and have potential to call large structural variants
with accuracy. As the accuracy of sequencing using longer
reads improve, it will become increasingly attractive to use this
technology for calling SNPs and indels. In addition, variants
called using both NGS and TGS reads can increase call confi-
dence.

While variant calling reveals putative sources of modulations
to cellular tasks, additional analysis is needed to identify the
exact nature of these modulations. If a variant occurs in a por-
tion of a DNA that codes for a protein (called a gene), then the
variant can manifest itself as a change in the protein being syn-
thesized from that gene (this process is termed “gene expres-
sion”). The effect of a variant can realize in other ways too.
Variants can affect the ability of certain proteins, called Tran-
scription Factors (TF) to bind to the DNA. TFs regulate the
expression of various genes in the DNA. TFs bind to segments
of the DNA that have a specific pattern. If a variant causes
the TF-binding DNA segment to change its pattern, then the
affinity of the protein to that segment will be affected. Multi-
ple high-throughput technologies are available, which can pro-
vide measurements indicating the TF-binding affinity of differ-
ent segments of DNA. Downstream analysis is performed on



this data to determine models of binding affinity of different
TFs [5][17][45]. These models can be used to determine the
binding affinity of a TF to DNA segments not encountered in
the training set, computationally. For example, it is possible to
determine the effect of a variant on a known TF binding site
using these models.

Knowledge regarding variants and gene regulation are im-
portant from the point of view of cancer. The primary cause of
cancer is a defect in the genome, either inherited [19] or devel-
oped during the lifetime of an individual (somatic) [40]. It is
possible that defects associated with cancer affect the produc-
tion of TFs directly [8] or affect the DNA segments modulating
TF-binding [35][5]. It is hence of great importance to study
these genomic defects, which can be characterized through
variants in an individual’s DNA, as well as the mechanisms
behind how they manifest through expression, and regulation
driven by TFs.

Both variant calling and TF-binding studies handle DNA
sequences arising from multiple techologies having different
characteristics and error types. Some of the state-of-the-art
methods used to tackle these problems rely on expert knowl-
edge and heuristics. Machine Learning and Deep Neural Net-
works (DNNs) have been greatly successful in recent years in
complex classification tasks [24], with the ability to bypass the
need for explicit implementation of expert knowledge. DNNs
provide a method to specify a problem in terms of data belong-
ing to the problem’s domain. Training a sophisticated enough
DNN on a sufficiently large dataset allows it to determine the
right set of patterns and assumptions relevant to the problem.
Sophisticated DNN kernels are available today that have great
potential to handle generic sequence type data. These meth-
ods, with their great expressive power, and generlizability can
be used to adapt to the different types of underlying data in
these areas. In the next section we examine some background
material on variant calling, and TF binding, as well as Machine
Learning and DNN methods that can handle genome sequence
data. In the following section we examine some recent works
that have successfully applied Deep Learning to these areas.
Then we discuss some potential future directions for research
in these areas.

II. BACKGROUND

A. Variant calling

Sequencing data from the predominant NGS platform, Illu-
mina, comes in the form of reads or short sequences of up to
a few hundred bases in length [3]. These reads are extremely
short compared to the length of the human genome, which is
approximately 3 billion bases long. Before the reads can be
used for variant calling, they need to be mapped to a refer-
ence sequence, which is a standard repository of an assembled
human genome [2]. There are many tools such as bwa [28],
and bowtie2 [26] that provide such services. It is assumed that
SNPs and indels are limited in their span, so the mapping posi-
tions of reads to the reference is not affected by them. However,
the exact manner in which the mapping is done locally can be
affected by them. Once the reads are mapped to the reference, it
is possible to list, for every position in the reference sequence,
all the reads that map to that position, and specifically, all the
read positions and the base from each such read that maps to
that position. A consensus among these bases can be assumed
to be the actual base at that position in the sequenced organ-
ism, and a difference between this consensus and the reference
leads to a variant call. This summary is, of course, a simplified
picture of variant calling. In reality, more nuanced statistical
models and heuristic filters are introduced into the call proce-
dure [11]. Figure 1 illustrates the variant calling task in some

detail.

Fig. 1.: A simplified picture of variant calling

Germline variants are those that are inherited from parental
DNA, and are found throughout an organism’s body. Somatic
variants develop during the lifetime of an organism and can be
limited to specific parts of the body, such as a malignant tu-
mor. Somatic variant calling is complicated by the fact that the
composition of the sample used for sequencing can be hetero-
geneous with respect to the genome sequences in the cells in the
sample, and this heterogeneity makes the data more complex to
analyze. While germline variant callers depend on only one set
of sequenced data, somatic variant callers sometimes depend
on two, one from the affected tissue, and one from healthy tis-
sue, so as to be able to differentiate between the two types of
variants.

Most of the state-of-the-art methods for variant calling use a
combination of statistical models to measure the signal strength
supporting a variant, but also depend on heuristic filters devel-
oped from domain knowledge to locate patterns that indicate
misalignment or sequencing errors, not captured by the statis-
tical models. Overall, the performance metrics of these tools
are high, but they consistently underperform in specific areas
of the genome. The next innovation in variant calling needs to
address these issues. For example, it is simple to call variants in
regions of the genome which have close to uniform distribution
of the four bases in the genome, A, C, G and T. However, there
are interesting regions of the genome where the GC-content is
quite high or very low, and the read coverage (the average num-
ber of reads covering a single base in the sequenced genome) in
such regions is affected [7]. Since variant callers depend on the
coverage of reads to identify different scenarios, this deficiency
can cause problems. In addition, Heng Li [27] discovered that
most tools cannot efficiently analyze low-complexity regions,
regions which contain subsequences that have small entropy,
such as localized repeats of the same base (e.g., “AAAAA”).

B. Transcription Factor binding models

Transcription Factors are known to bind to segments of DNA
with a specific pattern. A pattern or motif associated with a
TF is described using what is called a Position Weight Matrix
(PWM). A PWM has four rows, and as many columns as the
length of the pattern. The magnitude of the entries in a column
reflect the proportionality of the four bases in a corresponding
column in a DNA segment that matches the pattern. A specific
segment of DNA may be scored using the PWM by choosing
the entry in each column of the PWM that matches the base in
the corresponding position of the DNA, and multiplying them
together (Table I).

There are various models that can assign a PWM to a prob-
ability of binding. These may simply assume that the entries
in the PWM are themselves probabilities and use them in scor-
ing different “alignments” of the PWMs to the given sequence
segment [37], or depend on modeling the binding energies of a
protein to a given DNA segment as a function of its similarity
with the TF’s motif [45]. It is possible to use this modeling



infrastructure for different purposes. For example, it is possi-
ble to obtain profiles of the binding affinity of specific TFs to
different parts of the genome from high-throughput technolo-
gies such as ChiP-seq [22], or PBM [32]. It is then possible to
estimate the PWMs (originally unknown) that can predict the
binding profiles. The estimated PWMs maybe stored for fur-
ther analysis. Another interesting problem is, given the PWMs,
to predict analytically, the binding affinity of a TF to different
segments of a newly sequenced genome.

TABLE I
: Scoring a sequence segment using a PWM. Example sequence
segment ACGCT; Score = 0.2x0.8x0.8x0.1x0.7

A 0.2 0.1 0.1 0.9 0.1
C 0.7 0.8 0.02 0.1 0.1
G 0.05 0.05 0.8 0.0 0.1
T 0.05 0.05 0.08 0.0 0.7

seq A C G C T

C. Relevance to cancer and approach

NGS techniques are becoming of increasing significance in
the understanding and treatment of cancer. Genetic predispo-
sition to certain types of cancers may be determined from the
variants in an individual’s genome [21][40]. It is possible to
improve the accuracy of diagnosis of certain cancer types us-
ing small biopsies, when using sequence data in the analysis
[21]. The number of mutations in the genome in the affected
tissue can provide methods to estimate progression of the dis-
ease [40]. In many cancer types, the mechanism of regulation
through TFs can be affected due to mutations affecting the pro-
duction of the TFs [8]. It is also possible that DNA-segments
exhibit TF-binding characteristics that lead to unfavourable
regulation [35]. A recent work [5] attempted characterizing
the effects of somatic mutations collected in the COSMIC [1]
database on TF-binding.

To measure the impact of these phenomena, it is necessary to
develop methods that are robust across multiple sources of se-
quencing data. It is important that tool performance be bench-
marked and improved in different types of scenarios, and over-
all metrics averaged over the entire problem-space may mask
potential problem areas. For example, the next set of innova-
tions in variant calling should concentrate on improving call
confidence in difficult-to-call regions of the genome, as well
as overall confidence level in the calls. To break through to the
next level of improvement and fidelity in this manner, it may be
necessary to question explicit or implicit assumptions involved
in modeling these problems in classical approaches.

Neural Networks, being universal function approximators
[25], have the ability to represent complex problems in clas-
sification and regression. Deep Neural Networks have been
successful recently, delivering state-of-the-art performance in
tasks in image and speech applications [15][18][24]. They have
the potential to learn the underlying patterns of a problem faith-
fully, from a large number of examples of the problem, without
the need for expert intervention or simplifying assumptions.
To unlock the potential of DNNs in analyzing genomic data,
efforts need to be set up to develop models that are native to
genome sequence data, as well as specifying the problem using
datasets that faithfully represent the statistics of real data in the
field.

D. Models for analyzing genomic data

D.1 Hidden Markov Models

A Hidden Markov Model (HMM) is a directed graph represent-
ing a joint distribution of two sequences, one of which is a sym-
bol sequence, and the other a state sequence, where a state is a
node in the graph. The symbol sequence is usually associated
with some observed quantity in real life, such as a speech signal
or a sequence of bases from a genome. The state sequence is
unobserved in reality, but is usually attributed to some under-
lying process that generates the symbol sequence. Using the
parameters of the HMM, it is usually possible to infer the most
likely state sequence that produced any given symbol sequence,
which allows labeling different parts of the sequence. It is pos-
sible to use the HMM as a generative model, to produce data
simulating the distribution of the real data that it attempts to
model. During the generative process, one starts at some state
j with probability πj . At state j, a symbol is generated fol-
lowing an “emission probability distribution” attached to that
state, which is a distribution over the alphabet of the symbols
in the symbol sequence. Then a transition is made from state j
to another state i, which is picked following a transition prob-
ability distribution attached to state j. Repeating this process
generates a sequence of states (or nodes) and sequence of sym-
bols. This description corresponds to a first order HMM, in
which the symbol generated and the next state depend only on
the current state. In a zero-th order HMM, the probability of
the next state doesn’t depend on the current state, but follows a
fixed global probability distribution.

HMMs have been the extremely popular in many sequence
data analytics in bioinfomatics and genomics. HMMs are used
in gene modeling [41], motif detection [37], read mapping and
multiple sequence alignment [12], to name a few. In each
of these cases, an unobserved property is assigned to a part
of an observed genomic sequence. Even though HMMs do
not explicitly assume a Markov relationship between consecu-
tive symbols in the observed symbol sequence, they have been
found to be unable to model long term dependences across the
length of the observed sequence [13].

D.2 Deep Neural Networks

A DNN is a cascade of mathematical functions that process,
sequentially, an input data item to produce an output conclu-
sion. To be considered deep, this architecture needs to have
more than two functions applied sequentially on the data. Each
such function is called a layer, and in many cases a layer it-
self is a composition of a linear and non-linear function. The
most popular applications of DNNs are regression and classifi-
cation, where an input X is used to predict an output Y . Dur-
ing the training phase, ground-truth values for the output, Ŷ ,
are provided and the error between Y and Ŷ is minimized, by
changing the parameters of the DNN appropriately. During the
testing or inference phase, the DNN is used to predict Y from
unseen examples of X .

Mathematically, a DNN maps an input to an output using a
complex composition of many, usually nonlinear, functions.

Y = f1 (f2 (f3 (f4 · · · fn (X)))) (1)

Here f1, f2, · · · fn are the layers of the DNN. These can be
functions with scalar, vector, matrix or tensor inputs and out-
puts. In the simplest case, the layer takes the form

f(~x) = σ(~xTW +~b) (2)

where the input, ~x, is a column-vector, σ is a nonlinear func-
tion such as the sigmoid function, the tanh function, or rectifi-



cation,W is a matrix, and~b is a bias vector. The layer described
by Equation 2 is usually referred to as a densely-connected
layer, since the matrix W defines some relationship between
every component in ~x and every component in the output vec-
tor. The densely-connected layers usually form the final layers
in a DNN, providing the output vector. There are many differ-
ent types of popular DNN layers available today, each suited
for specific tasks or sub-tasks within a DNN architecture. We
will briefly review a few of the successful DNN layer types
next.

Convolutional Neural Networks Convolutional Neural Net-
works (CNN) contain convolutional layers, which have a sim-
ilar form as the densely-connected layers in that they apply a
linear function followed by a non-linear function to the input.
If X is a set of inputs {x1, x2, · · ·xn}, then the convolutional
layer produces an output set {y1, y2, · · · ym} using the follow-
ing operation:

yi =

n∑
j=1

σ(xj ∗Wij + bi) (3)

where ∗ is the convolution operation, σ is a non-linear oper-
ation and Wij is called the convolutional kernel. Both xj and
Wij have the same number of dimensions, that is, if xj is an
image, Wij is a two-dimensional matrix, and if xj is a vector,
Wij is also a vector. Wij is usually smaller than the input xj .

If xj is an image, the convolution operation slidesWij along
the length and height of xj and at each step, produces an out-
put element, by multiplying Wij element-wise with the slice
of xj currently lined-up against Wij , and summing up. This
computation implies that if Wij has the capacity to uncover a
specific pattern, the exact position of the pattern in the image
is not important (this property is more formally referred to as
linear shift invariance).

CNNs also usually contain what are called pooling layers
between different convolutional layers. A pooling layer, when
applied to a 2D image, shrinks the image using local operations
on neighboring elements in the image (e.g., average of neigh-
boring elements). This structure allows CNNs to build inter-
mediate outputs (or features) that are successively higher-level
patterns that help the classification task.

Recurrent Neural Networks Recurrent Neural Networks
(RNNs) attempt to find patterns in time, or in a sequence of
data that have possible relationships among themselves. To-
wards this end RNNs generate and store state information after
every element in the sequence is processed, and use this state
information in the computation of the output corresponding to
the next element in the sequence. For example, if the input
sequence is a sequence of vectors, ~xi is the i-th item in the se-
quence, W ,~b are parameters of the RNN layer, and ~si−1 is the
state information after processing the first i − 1 items in the
sequence, the RNN computes the output corresponding to the
i-th input as

~yi = σ((~xi, ~si−1)
TW + b) (4)

where (~a,~b) concatenates ~a,~b. In the simplest case, the state
information ~si−1 = ~yi−1.

The simplest RNNs do not function well when attempting to
capture patterns set far apart in time. To do so, the state infor-
mation must be computed and incorporated in a more sophis-
ticated manner. Long-Short Term Memory (LSTM) and Gated
Recurrent Units (GRU) are variations of the RNN that incor-
porate such extended state information. They include what are

called “gates” to determine when the state information is up-
dated, and whether to use the state information in computing
the current output.

E. Accelerating workflows

Since many analytics in genomics have relevance to
medicine, it is important to have fast execution. FPGAs [31]
and GPUs [10][30] have been quite successful in obtaining
higher performance and higher power. While FPGAs may be
harder to program, there are techniques such as High Level
Synthesis that can boost productivity [36]. Recent works in
FPGA design [43][44] aim to accelerate Deep Neural Network
workflows and these may be relevant to areas with high po-
tential to use advanced machine learning methods such as ge-
nomics. Modern machine learning frameworks such as Tensor-
flow [4] provide highly programmer-friendly interfaces to un-
lock the power of optimized CPU and GPU libraries for train-
ing and testing Deep Neural Networks. Advances in Machine
Learning theory as well as efficient implementation techniques
for Deep Neural Networks are both highly relevant to big data
analytics such as those in genomics.

III. MACHINE LEARNING IN GENOMICS

A. Machine learning methods in variant calling

There have been recently some machine learning-based ap-
proaches that can handle variant calling of point substitutions
and indels. SomaticSeq [14] merges calls from multiple so-
matic variant callers to determine putative locations of variants.
For these locations, features regarding mapping and quality of
reads are extracted from the sequencing data, which combined
with the call results of the multiple tools, are used as inputs
for a boosted decision tree type classifier. SNooPer [38] is an-
other somatic variant caller that determines features necessary
for variant calling and uses them as inputs for a Random Forest
classifier. VariantMetaCaller [16] combines information from
multiple germline variant callers using a Support Vector Ma-
chine to produce a variant call list. While these methods use
Machine Learning techniques, they do not fall under the deep
learning paradigm.

In contrast to these methods, DeepVariant [34] is a variant
caller that applies Deep Learning to the problem of variant call-
ing. DeepVariant collects read mapping data from a putative
site with variation. It then obtains a pictorial representation
of the local alignment between reads mapping to the site and
the segment of the reference sequence surrounding the site as
printed out visually (also referred to as pileup), and then en-
codes each base in the pileup with a different colour. This
color-coded image is then passed through a CNN which pre-
dicts whether there is a variant at the site. DeepVariant is a
marked deviation from the conventional approaches in which
domain expertise is used to craft explicit tests or devise features
to be fed to a classifier that are likely relevant to the problem
domain. Instead, DeepVariant relies on the ability of the DNN
to learn the necessary patterns for calling variants.

We propose to extend this approach further. Instead of
posing the variant calling problem as an image recognition
problem, we attempt to develop specialized representations for
alignment data that can expose detailed similarity measures be-
tween the read sequence and the associated segment of the ref-
erence sequence. This representation will then be examined
by a DNN to determine patterns that can help it classify the
site as having a variant or not. The use of a detailed representa-
tion deviates from DeepVariant’s pileup representation in that it
doesn’t provide the DNN classifier with “baked-in” alignments
to look at. Instead it provides similarity measures that the DNN



can re-interpret internally as necessary. This difference is im-
portant since in many regions of the genome, the local mapping
of a read to the reference segment, as output by a mapping tool,
can be wrong and in many cases, a local remapping tool may
not be able to correct for these mistakes [27].

We tested our assumptions in a somatic variant calling set-
ting, where reads from normal and tumor tissues are available.
Initially, the data is analyzed by weak callers that are highly
sensitive to variant signals, but not specific in that the resultant
callers have a large number of false positive calls. It is fairly
simple to create such weak callers. Next, we create represen-
tations of reads from the filtered sites and pass them through
a DNN. Figure 2a gives a high-level overview of our DNN
architecture. At every site, CNNs analyze normal and tumor
sequencing data to isolate patterns related to variant calling.
The conclusions from the CNNs are combined and processed
further by additional layers to determine the variant call con-
fidence at the site. The initial results in Figure 2b show that
our representation method can expose patterns related to vari-
ant calls and generalize them to unseen test examples. We are
currently working on scaling our experiments up, and improv-
ing our call efficiency.

(a) DNN architecture (b) Train and test accuracy

Fig. 2.: Experimental implementation of DNN-based somatic
variant caller

B. Machine learning methods in TF binding

Recently, there have been a few CNN-based approaches that
can obtain higher performance than the traditional models in
analyzing data related to TF-binding studies.

DeepBind [5] treats the input sequence as a vector. It then
uses a convolutional layer where each convolutional kernel
mimics a PWM. Each convolutional kernel is slid across the in-
put sequence, and a measure of match between every segment
of the input sequence and each PWM is generated. If there are
N motifs (PWMs) being searched for in the input sequence,
then there are N convolutional kernels used, and N outputs of
the convolutional operations. The results of the N convolu-
tions are each pooled along the length of the sequences (using
a pooling layer), and fed into a densely connected layer which
determines the binding affinity of the input sequence. Varia-
tions of the DeepBind architecture have been studied [42], and
it has been found that other convolutional architectures can out-
perform the DeepBind model. Another work [17] uses a com-
bination of convolutional layers and LSTM layers to determine
TF binding affinity. In this case, the results of convolution are
examined by an LSTM network. The LSTM network can ex-
tract patterns related to the arrangement of the motifs along the
input sequence, in addition to determining whether the motifs
are present in the input sequence.

As mentioned before, HMMs have been used for determin-
ing TF-binding sites in genome segments, as well as to de-
termine the PWMs in a set of known binding locations. An
HMM can perform a similar task as an LSTM in that it can

Fig. 3.: ROC curve comparing an HMM, our model, and a CNN

examine all types of arrangements of motifs along the input
sequence. Previously, neural network architectures were ex-
plored in which an ensemble of HMMs draws features from
input sequences, which are then used in a classification task
using a densely-connected layer [9]. The densely-connected
layers and the HMMs can be trained jointly in this frame-
work. Using an HMM-based formulation has some advantages
over using only advanced DNN layers. The HMM formulation
places a definitive probabilistic meaning on the output of the
model. This meaning allows for the model to be used to draw
inferences outside of the classification framework. Layers in
a CNN, or LSTM networks do not naturally lend themselves
to stand-alone and rigorous interpretations, even though in the
case of DeepBind, parallels may be drawn between PWMs and
the convolutional kernels. In addition, a pure CNN-based ap-
proach may not generalize to all sequence-based problems, es-
pecially when the sequences have variable length, which is the
case with a lot of the data in genomics (in such cases, RNNs
are usually preferable).

The disadvantage of the HMM compared to an LSTM is that
it may not be able to capture patterns set far apart in time.
We are currently working to extend the HMM formulation to
produce a model that is probabilistically meaningful and inter-
pretable like an HMM, but is also efficient in examining pat-
terns that have significant separation in time. Our model may
be trained within the DNN framework, but can also be later
used to perform other types of inferences, stand-alone. We set
up an initial experiment comparing our extended model, and an
HMM in a task classifying a segment of genomic sequence as
having affinity for TF-binding or not. Both models are zero-th
order models, implying that the transition probabilities do not
depend on the current state. The experiment uses one of the
datasets published in a previous work [42] for the motif dis-
covery task. Figure 3 compares the performance of the HMM,
our extended model, and a DeepBind-like CNN. It may be seen
that our model significantly outperforms the HMM, while per-
forming similar to the CNN. We plan to improve the scale of
our model as well as that of the experiments in the future.

IV. CONCLUSIONS

High-throughput technologies are able to produce a large
amount of genomic data at a low cost. The availability of large
quantitites of data paves the way for using Deep Neural Net-
works and Deep Learning to analyze the data. Deep Neural



Networks have the capacity to learn complex patterns neces-
sary for classification or regression problems, and allows spec-
ification of the problem through a representative sample of data
from the problem domain. DNN formulations can replace ex-
pert knowledge, heuristics and simplifying assumptions, and
this capability is important to obtain the next level of improve-
ment in accuracy for genomics applications. These applica-
tions can have high impact in important areas of treatment and
diagnosis such as in the case of cancer. Deep Learning ap-
proaches are emerging in some of these areas, but there is scope
for further innovation.
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