EEG-GRAF: A Factor-Graph-Based Model for Capturing Spatial, Temporal, and Observational Relationships in Electroencephalograms

Yogatheesean Varatharajah¹, Min Jin Chong², Krishnakant Saboo¹, Brent Berry¹, Benjamin Brinkmann³, Gregory Worrell², and Ravishankar Iyer¹

¹Dept. of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
²Mayo Clinic, Dept. of Neurology, Rochester MN 55904, USA.

Introduction

Graph Inference

Motivation and Goals of the Project

Dependencies - Graphical Representation

Definitions of Factor Functions

Notation

\[X_k(t) \in \{0,1\} \text{- abnormal event at the } n^{th} \text{epoch of channel } k \]

\[Y_k(t) \in \{0,1\} \text{- the SOZ likely state of the } n^{th} \text{epoch of channel } k \]

Abnormal events

\[f(Y_k(t),X_k(\cdot)) = e^{-c(X_k(t)-Y_k(t))^2} \]

Spatial correlation

\[g(Y_k(t),Y_{\cdot}(\cdot)) = e^{-c(Y_k(t)-Y_{\cdot}(\cdot))^2} \]

Temporal correlation

\[h(Y_k(t),Y_{\cdot}(\cdot)) = e^{-c(Y_k(t)-Y_{\cdot}(\cdot))^2} \]

where \(\Delta_i\) was

Results

<table>
<thead>
<tr>
<th>Method</th>
<th>AUC</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification - cut</td>
<td>0.72</td>
<td>0.84</td>
<td>0.66</td>
<td>0.40</td>
<td>0.66</td>
<td>0.50</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.86</td>
<td>0.86</td>
<td>0.56</td>
<td>0.40</td>
<td>0.86</td>
<td>0.70</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.94</td>
<td>0.94</td>
<td>0.56</td>
<td>0.34</td>
<td>0.94</td>
<td>0.84</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.94</td>
<td>0.94</td>
<td>0.56</td>
<td>0.34</td>
<td>0.94</td>
<td>0.84</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.94</td>
<td>0.94</td>
<td>0.56</td>
<td>0.34</td>
<td>0.94</td>
<td>0.84</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.94</td>
<td>0.94</td>
<td>0.56</td>
<td>0.34</td>
<td>0.94</td>
<td>0.84</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.94</td>
<td>0.94</td>
<td>0.56</td>
<td>0.34</td>
<td>0.94</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Acknowledgements

This research was partly supported by Mayo Clinic and Illinois Alliance Fellowships for Technology-based Healthcare Research, National Science Foundation grants 08-33773 and 08-33770, National Institute of Health grants NINDS-U54-NS075757, NINDS-R01-NS02986, NIBIB-HL105155, and NINDS-U01-NS049745-01. BMD faculty award, Mayo Clinic Discovery Translation Grant, National Institutes of Health (R01-N503399, R01-G507818).

1. Study of neurophysiological processes is important for understanding the brain.
2. Electroencephalography (EEG) is an exceptional tool for this type of studies.
3. EEG contains rhythms and discrete neurophysiological events.
4. Neural activities in different brain regions have spatial and temporal associations.

Graph Inference

Exact Inference using Graph Cut

Abnormal Brain Tissue Classification

Results

Notation

\[X_k(t) \in \{0,1\} \text{- abnormal event at the } n^{th} \text{epoch of channel } k \]

\[Y_k(t) \in \{0,1\} \text{- the SOZ likely state of the } n^{th} \text{epoch of channel } k \]

Abnormal events

\[f(Y_k(t),X_k(\cdot)) = e^{-c(X_k(t)-Y_k(t))^2} \]

Spatial correlation

\[g(Y_k(t),Y_{\cdot}(\cdot)) = e^{-c(Y_k(t)-Y_{\cdot}(\cdot))^2} \]

Temporal correlation

\[h(Y_k(t),Y_{\cdot}(\cdot)) = e^{-c(Y_k(t)-Y_{\cdot}(\cdot))^2} \]

where \(\Delta_i\) was

Results

<table>
<thead>
<tr>
<th>Method</th>
<th>AUC</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification - cut</td>
<td>0.72</td>
<td>0.84</td>
<td>0.66</td>
<td>0.40</td>
<td>0.66</td>
<td>0.50</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.86</td>
<td>0.86</td>
<td>0.56</td>
<td>0.40</td>
<td>0.86</td>
<td>0.70</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.94</td>
<td>0.94</td>
<td>0.56</td>
<td>0.34</td>
<td>0.94</td>
<td>0.84</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.94</td>
<td>0.94</td>
<td>0.56</td>
<td>0.34</td>
<td>0.94</td>
<td>0.84</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.94</td>
<td>0.94</td>
<td>0.56</td>
<td>0.34</td>
<td>0.94</td>
<td>0.84</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.94</td>
<td>0.94</td>
<td>0.56</td>
<td>0.34</td>
<td>0.94</td>
<td>0.84</td>
</tr>
<tr>
<td>Classification - cut</td>
<td>0.94</td>
<td>0.94</td>
<td>0.56</td>
<td>0.34</td>
<td>0.94</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Acknowledgements

This research was partly supported by Mayo Clinic and Illinois Alliance Fellowships for Technology-based Healthcare Research, National Science Foundation grants 08-33773 and 08-33770, National Institute of Health grants NINDS-U54-NS075757, NINDS-R01-NS02986, NIBIB-HL105155, and NINDS-U01-NS049745-01. BMD faculty award, Mayo Clinic Discovery Translation Grant, National Institutes of Health (R01-N503399, R01-G507818).

1. Study of neurophysiological processes is important for understanding the brain.
2. Electroencephalography (EEG) is an exceptional tool for this type of studies.
3. EEG contains rhythms and discrete neurophysiological events.
4. Neural activities in different brain regions have spatial and temporal associations.